Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 602(6): 1199-1210, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38431907

RESUMO

DFNB61 is a recessively inherited nonsyndromic hearing loss caused by mutations in SLC26A5, the gene that encodes the voltage-driven motor protein, prestin. Prestin is abundantly expressed in the auditory outer hair cells that mediate cochlear amplification. Two DFNB61-associated SLC26A5 variants, p.W70X and p.R130S, were identified in patients who are compound heterozygous for these nonsense and missense changes (SLC26A5W70X/R130S ). Our recent study showed that mice homozygous for p.R130S (Slc26a5R130S/R130S ) suffer from hearing loss that is ascribed to significantly reduced motor kinetics of prestin. Given that W70X-prestin is nonfunctional, compound heterozygous Slc26a5R130S/- mice were used as a model for human SLC26A5W70X/R130S . By examining the pathophysiological consequences of p.R130S prestin when it is the sole allele for prestin protein production, we determined that this missense change results in progressive outer hair cell loss in addition to its effects on prestin's motor action. Thus, this study defines the pathogenic roles of p.R130S prestin and identifies a limited time window for potential clinical intervention. KEY POINTS: The voltage-driven motor protein, prestin, is encoded by SLC26A5 and expressed abundantly in cochlear outer hair cells (OHCs). The importance of prestin for normal hearing was demonstrated in mice lacking prestin; however, none of the specific SLC26A5 variants identified to date in human patients has been experimentally demonstrated to be pathogenic. In this study we used both cell lines and a mouse model to define the pathogenic role of compound heterozygous p.W70X (c.209G>A) and p.R130S (c.390A>C) SLC26A5 variants identified in patients with moderate to profound hearing loss. As in patients, mice carrying one copy of p.R130S Slc26a5 showed OHC dysfunction and progressive degeneration, which results in congenital progressive hearing loss. This is the first functional study reporting pathogenic SLC26A5 variants and pointing to the presence of a therapeutic time window for potential clinical interventions targeting the affected OHCs before they are lost.


Assuntos
Surdez , Perda Auditiva , Animais , Humanos , Camundongos , Células Ciliadas Auditivas Externas/fisiologia , Perda Auditiva/genética , Perda Auditiva/metabolismo , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Mutação , Proteínas/genética
2.
bioRxiv ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37662362

RESUMO

DFNB61 is a recessively inherited nonsyndromic hearing loss caused by mutations in SLC26A5 , the gene that encodes the voltage-driven motor protein, prestin. Prestin is abundantly expressed in the auditory outer hair cells that mediate cochlear amplification. Two DFNB61-associated SLC26A5 variants, p.W70X and p.R130S, were identified in patients who are compound heterozygous for these nonsense and missense changes ( SLC26A5 W70X/R130S ). Our recent study showed that mice homozygous for p.R130S ( Slc26a5 R130S/R130S ) suffer from hearing loss that is ascribed to significantly reduced motor kinetics of prestin. Given that W70X-prestin is nonfunctional, compound heterozygous Slc26a5 R130S/- mice were used as a model for human SLC26A5 W70X/R130S . By examining the pathophysiological consequences of p.R130S prestin when it is the sole allele for prestin protein production, we determined that this missense change results in progressive outer hair cell loss in addition to its effects on prestin's motor action. Thus, this study fully defines the pathogenic roles for the p.R130S prestin, which points to the presence of a limited time window for potential clinical intervention.

3.
J Assoc Res Otolaryngol ; 24(4): 413-428, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37464091

RESUMO

Normal hearing is associated with cochlear nonlinearity. When two tones (f1 and f2) are presented, the intracochlear response contains additional components that can be recorded from the ear canal as distortion product otoacoustic emissions (DPOAEs). Although the most prominent intermodulation distortion component is at 2f1-f2, other cubic distortion products are also generated. Because these measurements are noninvasive, they are used in humans and in animal models to detect hearing loss. This study evaluated how loss of sensitivity affects DPOAEs with frequencies above and below the stimulating primaries, i.e., for upper sideband (USB) components like 2f2-f1 and for lower sideband (LSB) components like 2f1-f2. DPOAEs were recorded in several mouse mutants with varying degrees of hearing loss associated with structural changes to the tectorial membrane (TM), or with loss of outer hair cell (OHC) somatic electromotility due to lack of prestin or to the expression of a non-functional prestin. In mice with changes in sensitivity, magnitude reductions were observed for 2f1-f2 relative to controls with mice lacking prestin showing the greatest changes. In contrast, 2f2-f1 was minimally affected by reductions in cochlear gain due to changes in the TM or by the loss of OHC somatic electromotility. In addition, TM mutants with spontaneous otoacoustic emissions (SOAEs) generated larger responses than controls at 2f2-f1 when its frequency was similar to that for the SOAEs. Although cochlear pathologies appear to affect USB and LSB DPOAEs in different ways, both 2f1-f2 and 2f2-f1 reflect nonlinearities associated with the transducer channels. However, in mice, the component at 2f2-f1 does not appear to receive enhancement due to prestin's motor action.


Assuntos
Surdez , Perda Auditiva , Humanos , Animais , Camundongos , Emissões Otoacústicas Espontâneas/fisiologia , Cóclea/fisiologia , Células Ciliadas Auditivas Externas , Estimulação Acústica
4.
Proc Natl Acad Sci U S A ; 120(11): e2217891120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36893263

RESUMO

Prestin (SLC26A5)-mediated voltage-driven elongations and contractions of sensory outer hair cells within the organ of Corti are essential for mammalian cochlear amplification. However, whether this electromotile activity directly contributes on a cycle-by-cycle basis is currently controversial. By restoring motor kinetics in a mouse model expressing a slowed prestin missense variant, this study provides experimental evidence acknowledging the importance of fast motor action to mammalian cochlear amplification. Our results also demonstrate that the point mutation in prestin disrupting anion transport in other proteins of the SLC26 family does not alter cochlear function, suggesting that the potential weak anion transport of prestin is not essential in the mammalian cochlea.


Assuntos
Proteínas de Transporte de Ânions , Proteínas , Camundongos , Animais , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Proteínas/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Mamíferos/metabolismo , Ânions/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo
6.
Nature ; 605(7909): 298-303, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508658

RESUMO

The cochlea uses two types of mechanosensory cell to detect sounds. A single row of inner hair cells (IHCs) synapse onto neurons to transmit sensory information to the brain, and three rows of outer hair cells (OHCs) selectively amplify auditory inputs1. So far, two transcription factors have been implicated in the specific differentiation of OHCs, whereas, to our knowledge, none has been identified in the differentiation of IHCs2-4. One such transcription factor for OHCs, INSM1, acts during a crucial embryonic period to consolidate the OHC fate, preventing OHCs from transdifferentiating into IHCs2. In the absence of INSM1, embryonic OHCs misexpress a core set of IHC-specific genes, which we predict are involved in IHC differentiation. Here we find that one of these genes, Tbx2, is a master regulator of IHC versus OHC differentiation in mice. Ablation of Tbx2 in embryonic IHCs results in their development as OHCs, expressing early OHC markers such as Insm1 and eventually becoming completely mature OHCs in the position of IHCs. Furthermore, Tbx2 is epistatic to Insm1: in the absence of both genes, cochleae generate only OHCs, which suggests that TBX2 is necessary for the abnormal transdifferentiation of INSM1-deficient OHCs into IHCs, as well as for normal IHC differentiation. Ablation of Tbx2 in postnatal, largely differentiated IHCs makes them transdifferentiate directly into OHCs, replacing IHC features with those of mature and not embryonic OHCs. Finally, ectopic expression of Tbx2 in OHCs results in their transdifferentiation into IHCs. Hence, Tbx2 is both necessary and sufficient to make IHCs distinct from OHCs and maintain this difference throughout development.


Assuntos
Diferenciação Celular , Células Ciliadas Auditivas Internas , Células Ciliadas Auditivas Externas , Animais , Diferenciação Celular/genética , Cóclea/citologia , Células Ciliadas Auditivas Internas/citologia , Células Ciliadas Auditivas Externas/citologia , Camundongos , Proteínas com Domínio T
7.
Hear Res ; 423: 108428, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34987016

RESUMO

Outer hair cells (OHCs) are innervated by both medial olivocochlear (MOC) efferents and type II afferents, which also innervate supporting cells to form a local neural network. It has also been demonstrated that prestin provides the molecular basis for OHC somatic electromotility, amplifying movements within the organ of Corti. Although not anticipated, early-onset OHC loss was found in two prestin transgenic mouse models that either lack prestin protein or lack electromotility. To uncover the molecular pathways that evoke OHC death, we profiled the coding transcriptome of OHCs from wildtype (WT), prestin-knockout (KO), and 499-knockin (KI) mice using single-cell RNA sequencing (scRNA-seq). scRNA-Seq transcriptomics and pathway analyses did not reveal common pathways associated with OHC loss observed in prestin-KO and 499-KI mice. Clustering enrichment analysis showed that increased gene expression in OHCs from prestin-KO mice was associated with lipid metabolic processes and cell death pathways. These mRNA profiles likely contribute to the OHC loss observed in prestin-KO mice and support the notion that prestin is also a structural protein, important for the normal plasma membrane compartmentalization that is essential to establish MOC efferent synapses. In contrast, the mRNA profile of OHCs from 499-KI mice did not provide a rational explanation of the early-onset OHC loss in this mutant. OHCs from 499-KI mice have normal plasma membrane compartmentalization and normal OHC-MOC contacts. However, 499 prestin lacks electromotility and appears to change the local neural network around OHCs, as more synaptic markers were found near neighboring supporting cells when compared to WT and prestin-KO mice. Thus, OHCs in prestin-KOs (no prestin protein, no electromotility) and 499-KIs (prestin protein present, no electromotility) may influence local neuronal networks in different ways. Collectively, our data suggest that prestin and its motile properties are important for OHC survival and the maintenance of local afferent/efferent circuits, as well as for its role in cochlear amplification. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.


Assuntos
Células Ciliadas Auditivas Externas , Proteínas Motores Moleculares , Animais , Cóclea/metabolismo , Células Ciliadas Auditivas Externas/fisiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , RNA Mensageiro/metabolismo
8.
Hear Res ; 423: 108376, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34848118

RESUMO

Prestin (SLC26A5) is a membrane-based voltage-dependent motor protein responsible for outer hair cell (OHC) somatic electromotility. Its importance for mammalian cochlear amplification has been demonstrated using mouse models lacking prestin (prestin-KO) and expressing dysfunctional prestin, prestinV499G/Y501H (499-prestin-KI). However, it is still not elucidated how prestin contributes to the mechanical amplification process in the cochlea. In this study, we characterized several prestin mouse models in which prestin activity in OHCs was variously manipulated. We found that near-normal cochlear function can be maintained even when prestin activity is significantly reduced, suggesting that the relationship between OHC electromotility and the peripheral sensitivity to sound may not be linear. This result is counterintuitive given the large threshold shifts in prestin-KO and 499-prestin-KI mice, as reported in previous studies. To reconcile these apparently opposing observations, we entertain a voltage- and turgor pressure-based cochlear amplification mechanism that requires prestin but is insensitive to significant reductions in prestin protein expression. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.


Assuntos
Células Ciliadas Auditivas Externas , Proteínas Motores Moleculares , Animais , Cóclea/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Audição , Mamíferos/metabolismo , Camundongos , Proteínas Motores Moleculares/metabolismo , Atividade Motora
9.
Biophys J ; 120(21): 4777-4785, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34555361

RESUMO

Studies of genetic disorders of sensorineural hearing loss have been instrumental in delineating mechanisms that underlie the remarkable sensitivity and selectivity that are hallmarks of mammalian hearing. For example, genetic modifications of TECTA and TECTB, which are principal proteins that comprise the tectorial membrane (TM), have been shown to alter auditory thresholds and frequency tuning in ways that can be understood in terms of changes in the mechanical properties of the TM. Here, we investigate effects of genetic modification targeting CEACAM16, a third important TM protein. Loss of CEACAM16 has been recently shown to lead to progressive reductions in sensitivity. Whereas age-related hearing losses have previously been linked to changes in sensory receptor cells, the role of the TM in progressive hearing loss is largely unknown. Here, we show that TM stiffness and viscosity are significantly reduced in adult mice that lack functional CEACAM16 relative to age-matched wild-type controls. By contrast, these same mechanical properties of TMs from juvenile mice that lack functional CEACAM16 are more similar to those of wild-type mice. Thus, changes in hearing phenotype align with changes in TM material properties and can be understood in terms of the same TM wave properties that were previously used to characterize modifications of TECTA and TECTB. These results demonstrate that CEACAM16 is essential for maintaining TM mechanical and wave properties, which in turn are necessary for sustaining the remarkable sensitivity and selectivity of mammalian hearing with increasing age.


Assuntos
Moléculas de Adesão Celular , Perda Auditiva , Membrana Tectorial , Fatores Etários , Animais , Moléculas de Adesão Celular/deficiência , Moléculas de Adesão Celular/metabolismo , Proteínas da Matriz Extracelular , Audição , Camundongos , Viscosidade
10.
Hear Res ; 409: 108314, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34332206

RESUMO

Cochlear function depends on the operation of a coupled feedback loop, incorporating outer hair cells (OHCs), and structured to assure that inner hair cells (IHCs) convey frequency specific acoustic information to the brain, even at very low sound levels. Although our knowledge of OHC function and its contribution to cochlear amplification has expanded, the importance of the tectorial membrane (TM) to the processing of mechanical inputs has not been fully elucidated. In addition, there are a surprising number of genetic mutations that affect TM structure and that produce hearing loss in humans. By synthesizing old and new results obtained on several mouse mutants, we learned that animals with abnormal TMs are prone to generate spontaneous otoacoustic emissions (SOAE), which are uncommon in most wildtype laboratory animals. Because SOAEs are not produced in TM mutants or in humans when threshold shifts exceed approximately 25 dB, some degree of cochlear amplification is required. However, amplification by itself is not sufficient because normal mice are rarely spontaneous emitters. Since SOAEs reflect active cochlear operation, TM mutants are valuable for studying the oscillatory nature of the amplification process and the structures associated with its stabilization. Inasmuch as the mouse models were selected to mirror human auditory disorders, using SOAEs as a noninvasive clinical tool may assist the classification of individuals with genetic defects that influence the active mechanisms responsible for sensitivity and frequency selectivity, the hallmarks of mammalian hearing.


Assuntos
Emissões Otoacústicas Espontâneas , Membrana Tectorial , Estimulação Acústica , Animais , Biomarcadores , Células Ciliadas Auditivas Internas , Células Ciliadas Auditivas Externas , Camundongos
11.
Hear Res ; 400: 108143, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33340968

RESUMO

The global standing-wave model for generation of spontaneous otoacoustic emissions (SOAEs) suggests that they are amplitude-stabilized standing waves and that the spacing between SOAEs corresponds to the interval over which the phase changes by one cycle as determined from the phase-gradient delays of stimulus frequency otoacoustic emissions (SFOAEs). Because data characterizing the relationship between spontaneous and evoked emissions in nonhuman mammals are limited, we examined SOAEs and SFOAEs in tectorial membrane (TM) mutants and their controls. Computations indicate that the spacing between adjacent SOAEs is predicted by the SFOAE phase-gradient delays for TM mutants lacking Ceacam16, where SOAE frequencies are greater than ~20 kHz and the mutants retain near-normal hearing when young. Mice with a missense mutation in Tecta (TectaY1870C/+), as well as mice lacking Otoancorin (Otoa-/-), were also examined. Although these mutants exhibit hearing loss, they generate SOAEs with average frequencies of 11 kHz in TectaY1870C/+ and 6 kHz in Otoa-/-. In these animals, the spacing between adjacent SOAEs is larger than predicted by the SFOAE phase delays. It is also demonstrated that mice do not exhibit the strong frequency-dependence in signal coding that characterizes species with good low-frequency hearing. In fact, a transition occurs near the apical end of the mouse cochlea rather than at the mid-point along the cochlear partition. Hence, disagreements with the standing-wave model are not easily explained by a transition in tuning ratios between apical and basal regions of the cochlea, especially for SOAEs generated in TectaY1870C/+mice.


Assuntos
Membrana Tectorial , Animais , Surdez , Audição , Camundongos , Mutação de Sentido Incorreto , Emissões Otoacústicas Espontâneas
12.
Proc Natl Acad Sci U S A ; 117(24): 13571-13579, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32482850

RESUMO

Synchronized beating of cilia on multiciliated cells (MCCs) generates a directional flow of mucus across epithelia. This motility requires a "9 + 2" microtubule (MT) configuration in axonemes and the unidirectional array of basal bodies of cilia on the MCCs. However, it is not fully understood what components are needed for central MT-pair assembly as they are not continuous with basal bodies in contrast to the nine outer MT doublets. In this study, we discovered that a homozygous knockdown mouse model for MT minus-end regulator calmodulin-regulated spectrin-associated protein 3 (CAMSAP3), Camsap3tm1a/tm1a , exhibited multiple phenotypes, some of which are typical of primary ciliary dyskinesia (PCD), a condition caused by motile cilia defects. Anatomical examination of Camsap3tm1a/tm1a mice revealed severe nasal airway blockage and abnormal ciliary morphologies in nasal MCCs. MCCs from different tissues exhibited defective synchronized beating and ineffective generation of directional flow likely underlying the PCD-like phenotypes. In normal mice, CAMSAP3 localized to the base of axonemes and at the basal bodies in MCCs. However, in Camsap3tm1a/tm1a , MCCs lacked CAMSAP3 at the ciliary base. Importantly, the central MT pairs were missing in the majority of cilia, and the polarity of the basal bodies was disorganized. These phenotypes were further confirmed in MCCs of Xenopus embryos when CAMSAP3 expression was knocked down by morpholino injection. Taken together, we identified CAMSAP3 as being important for the formation of central MT pairs, proper orientation of basal bodies, and synchronized beating of motile cilia.


Assuntos
Corpos Basais/metabolismo , Cílios/metabolismo , Transtornos da Motilidade Ciliar/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animais , Axonema/metabolismo , Polaridade Celular , Transtornos da Motilidade Ciliar/genética , Células Epiteliais/metabolismo , Humanos , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Xenopus
13.
Front Mol Neurosci ; 12: 147, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31249509

RESUMO

CEACAM16 is a non-collagenous protein of the tectorial membrane, an extracellular structure of the cochlea essential for normal hearing. Dominant and recessive mutations in CEACAM16 have been reported to cause postlingual and progressive forms of deafness in humans. In a previous study of young Ceacam16ßgal/ßgal null mutant mice on a C57Bl/6J background, the incidence of spontaneous otoacoustic emissions (SOAEs) was greatly increased relative to Ceacam16+/+ and Ceacam16+/ßgal mice, but auditory brain-stem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs) were near normal, indicating auditory thresholds were not significantly affected. To determine if the loss of CEACAM16 leads to hearing loss at later ages in this mouse line, cochlear structure and auditory function were examined in Ceacam16+/+, Ceacam16+/ßgal and Ceacam16ßgal/ßgal mice at 6 and 12 months of age and compared to that previously described at 1 month. Analysis of older Ceacam16ßgal/ßgal mice reveals a progressive loss of matrix from the core of the tectorial membrane that is more extensive in the apical, low-frequency regions of the cochlea. In Ceacam16ßgal/ßgal mice at 6-7 months, the DPOAE magnitude at 2f1-f2 and the incidence of SOAEs both decrease relative to young animals. By ∼12 months, SOAEs and DPOAEs are not detected in Ceacam16ßgal/ßgal mice and ABR thresholds are increased by up to ∼40 dB across frequency, despite a complement of hair cells similar to that present in Ceacam16+/+ mice. Although SOAE incidence decreases with age in Ceacam16ßgal/ßgal mice, it increases in aging heterozygous Ceacam16+/ßgal mice and is accompanied by a reduction in the accumulation of CEACAM16 in the tectorial membrane relative to controls. An apically-biased loss of matrix from the core of the tectorial membrane, similar to that observed in young Ceacam16ßgal/ßgal mice, is also seen in Ceacam16+/+ and Ceacam16+/ßgal mice, and other strains of wild-type mice, but at much later ages. The loss of Ceacam16 therefore accelerates age-related degeneration of the tectorial membrane leading, as in humans with mutations in CEACAM16, to a late-onset progressive form of hearing loss.

14.
Sci Rep ; 9(1): 6874, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053797

RESUMO

Cochlear outer hair cells (OHC) express the motor protein, prestin, which is required for sensitivity and frequency selectivity. Because our previous work showed that a calmodulin binding site (CBS) was located in prestin's C-terminal, specifically within the intrinsically disordered region, we sought to delete the IDR to study the functional significance of calcium-dependent, calmodulin binding on OHC function. Although the construct lacking the IDR (∆IDR prestin) demonstrated wildtype-like nonlinear capacitance (NLC) in HEK293T cells, the phenotype in ∆IDR prestin knockins (KI) was similar to that in prestin knockouts: thresholds were elevated, NLC was absent and OHCs were missing from basal regions of the cochlea. Although ∆IDR prestin mRNA was measured, no prestin protein was detected. At the mRNA level, both of prestin's exons 17 and 18 were entirely removed, rather than the smaller region encoding the IDR. Our hybrid exon that contained the targeted deletion (17-18 ∆IDR) failed to splice in vitro and prestin protein lacking exons 17 and 18 aggregated and failed to target the cell membrane. Hence, the absence of prestin protein in ∆IDR KI OHCs may be due to the unexpected splicing of the hybrid 17-18 ∆IDR exon followed by rapid degradation of nonfunctional prestin protein.


Assuntos
Éxons/genética , Deleção de Sequência , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Animais , Feminino , Técnicas de Introdução de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Domínios Proteicos , Transportadores de Sulfato/química
15.
Nature ; 565(7737): E2, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30518865

RESUMO

In Figs. 1e and 2g of this Letter, the labels 'actin' and 'VGLUT3', respectively, should have been in red instead of green font. This has been corrected online.

16.
Nature ; 563(7733): 691-695, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30305733

RESUMO

The mammalian cochlea contains two types of mechanosensory hair cell that have different and critical functions in hearing. Inner hair cells (IHCs), which have an elaborate presynaptic apparatus, signal to cochlear neurons and communicate sound information to the brain. Outer hair cells (OHCs) mechanically amplify sound-induced vibrations, providing enhanced sensitivity to sound and sharp tuning. Cochlear hair cells are solely generated during development, and hair cell death-most often of OHCs-is the most common cause of deafness. OHCs and IHCs, together with supporting cells, originate in embryos from the prosensory region of the otocyst, but how hair cells differentiate into two different types is unknown1-3. Here we show that Insm1, which encodes a zinc finger protein that is transiently expressed in nascent OHCs, consolidates their fate by preventing trans-differentiation into IHCs. In the absence of INSM1, many hair cells that are born as OHCs switch fates to become mature IHCs. To identify the genetic mechanisms by which Insm1 operates, we compared the transcriptomes of immature IHCs and OHCs, and of OHCs with and without INSM1. In OHCs that lack INSM1, a set of genes is upregulated, most of which are normally preferentially expressed by IHCs. The homeotic cell transformation of OHCs without INSM1 into IHCs reveals a mechanism by which these neighbouring mechanosensory cells begin to differ: INSM1 represses a core set of early IHC-enriched genes in embryonic OHCs and makes them unresponsive to an IHC-inducing gradient, so that they proceed to mature as OHCs. Without INSM1, some of the OHCs in which these few IHC-enriched transcripts are upregulated trans-differentiate into IHCs, identifying candidate genes for IHC-specific differentiation.


Assuntos
Transdiferenciação Celular/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Células Ciliadas Auditivas Internas/citologia , Células Ciliadas Auditivas Externas/citologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Animais , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos/genética , Proteínas Repressoras , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Regulação para Cima/genética
17.
Acta Neuropathol Commun ; 6(1): 98, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30249300

RESUMO

Niemann-Pick Type C1 (NPC1) disease is a fatal neurovisceral disorder caused by dysfunction of NPC1 protein, which plays a role in intracellular cholesterol trafficking. The cholesterol-chelating agent, 2-hydroxypropyl-ß-cyclodextrin (HPßCD), is currently undergoing clinical trials for treatment of this disease. Though promising in alleviating neurological symptoms, HPßCD causes irreversible hearing loss in NPC1 patients and outer hair cell (OHC) death in animal models. We recently found that HPßCD-induced OHC death can be significantly alleviated in a mouse model lacking prestin, an OHC-specific motor protein required for the high sensitivity and sharp frequency selectivity of mammalian hearing. Since cholesterol status is known to influence prestin's electromotility, we examined how prestin contributes to HPßCD-induced OHC death in the disease context using the NPC1 knockout (KO) mouse model (NPC1-KO). We found normal expression and localization of prestin in NPC1-KO OHCs. Whole-cell patch-clamp recordings revealed a significant depolarization of the voltage-operating point of prestin in NPC1-KO mice, suggesting reduced levels of cholesterol in the lateral membrane of OHCs that lack NPC1. OHC loss and elevated thresholds were found for high frequency regions in NPC1-KO mice, whose OHCs retained their sensitivity to HPßCD. To investigate whether prestin's electromotile function contributes to HPßCD-induced OHC death, the prestin inhibitor salicylate was co-administered with HPßCD to WT and NPC1-KO mice. Neither oral nor intraperitoneal administration of salicylate mitigated HPßCD-induced OHC loss. To further determine the contribution of prestin's electromotile function, a mouse model expressing a virtually nonelectromotile prestin protein (499-prestin) was subjected to HPßCD treatment. 499-prestin knockin mice showed no resistance to HPßCD-induced OHC loss. As 499-prestin maintains its ability to bind cholesterol, our data imply that HPßCD-induced OHC death is ascribed to the structural role of prestin in maintaining the OHC's lateral membrane, rather than its motor function.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Células Ciliadas Auditivas Externas/efeitos dos fármacos , Proteínas Motores Moleculares/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Fatores Etários , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Linhagem Celular Transformada , Colesterol/metabolismo , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Proteína C1 de Niemann-Pick , Técnicas de Patch-Clamp , Proteínas/genética , Proteínas/metabolismo , Salicilatos/farmacologia , Transfecção
18.
Front Cell Neurosci ; 12: 211, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30079013

RESUMO

Outer hair cells (OHC) act as amplifiers and their function is modified by medial olivocochlear (MOC) efferents. The unique OHC motor protein, prestin, provides the molecular basis for somatic electromotility, which is required for sensitivity and frequency selectivity, the hallmarks of mammalian hearing. Prestin proteins are the major component of the lateral membrane of mature OHCs, which separates apical and basal domains. To investigate the contribution of prestin to this unique arrangement, we compared the distribution of membrane proteins in OHCs of wildtype (WT) and prestin-knockout (KO) mice. In WT, the apical protein PMCA2 was exclusively localized to the hair bundles, while it was also found at the lateral membrane in KOs. Similarly, a basal protein KCNQ4 did not coalesce at the base of OHCs but was widely dispersed in mice lacking prestin. Since the expression levels of PMCA2 and KCNQ4 remained unchanged in KOs, the data indicate that prestin is required for the normal distribution of apical and basal membrane proteins in OHCs. Since OHC synapses predominate in the basal subnuclear region, we also examined the synaptic architecture in prestin-KO mice. Although neurite densities were not affected, MOC efferent terminals in prestin-KO mice were no longer constrained to the basal pole as in WT. This trend was evident as early as at postnatal day 12. Furthermore, terminals were often enlarged and frequently appeared as singlets when compared to the multiple clusters of individual terminals in WT. This abnormality in MOC synaptic morphology in prestin-KO mice is similar to defects in mice lacking MOC pathway proteins such as α9/α10 nicotinic acetylcholine receptors and BK channels, indicating a role for prestin in the proper establishment of MOC synapses. To investigate the contribution of prestin's electromotility, we also examined OHCs from a mouse model that expresses non-functional prestin (499-prestin). We found no changes in PMCA2 localization and MOC synaptic morphology in OHCs from 499-prestin mice. Taken together, these results indicate that prestin, independent of its motile function, plays an important structural role in membrane compartmentalization, which is required for the formation of normal efferent-OHC synapses in mature OHCs.

19.
J Neurosci ; 38(13): 3177-3189, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29453205

RESUMO

Acquired hearing loss is the predominant neurodegenerative condition associated with aging in humans. Although mutations on several genes are known to cause congenital deafness in newborns, few genes have been implicated in age-related hearing loss (ARHL), perhaps because its cause is likely polygenic. Here, we generated mice lacking lysosomal calcium channel mucolipins 3 and 1 and discovered that both male and female mice suffered a polygenic form of hearing loss. Whereas mucolipin 1 is ubiquitously expressed in all cells, mucolipin 3 is expressed in a small subset of cochlear cells, hair cells (HCs) and marginal cells of the stria vascularis, and very few other cell types. Mice lacking both mucolipins 3 and 1, but not either one alone, experienced hearing loss as early as at 1 month of age. The severity of hearing impairment progressed from high to low frequencies and increased with age. Early onset of ARHL in these mice was accompanied by outer HC (OHC) loss. Adult mice conditionally lacking mucolipins in HCs exhibited comparable auditory phenotypes, thereby revealing that the reason for OHC loss is mucolipin codeficiency in the HCs and not in the stria vascularis. Furthermore, we observed that OHCs lacking mucolipins contained abnormally enlarged lysosomes aggregated at the apical region of the cell, whereas other organelles appeared normal. We also demonstrated that these aberrant lysosomes in OHCs lost their membrane integrity through lysosomal membrane permeabilization, a known cause of cellular toxicity that explains why and how OHCs die, leading to premature ARHL.SIGNIFICANCE STATEMENT Presbycusis, or age-related hearing loss (ARHL), is a common characteristic of aging in mammals. Although many genes have been identified to cause deafness from birth in both humans and mice, only a few are known to associate with progressive ARHL, the most prevalent form of deafness. We have found that mice lacking two lysosomal channels, mucolipins 3 and 1, suffer accelerated ARHL due to auditory outer hair cell degeneration, the most common cause of hearing loss and neurodegenerative condition in humans. Lysosomes lacking mucolipins undergo organelle membrane permeabilization and promote cytotoxicity with age, revealing a novel mechanism of outer hair cell degeneration and ARHL. These results underscore the importance of lysosomes in hair cell survival and the maintenance of hearing.


Assuntos
Células Ciliadas Auditivas/metabolismo , Presbiacusia/genética , Canais de Potencial de Receptor Transitório/genética , Animais , Feminino , Deleção de Genes , Células Ciliadas Auditivas/patologia , Lisossomos/metabolismo , Lisossomos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Presbiacusia/patologia
20.
eNeuro ; 5(6)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30627650

RESUMO

Spontaneous otoacoustic emissions (SOAEs) recorded from the ear canal in the absence of sound reflect cochlear amplification, an outer hair cell (OHC) process required for the extraordinary sensitivity and frequency selectivity of mammalian hearing. Although wild-type mice rarely emit, those with mutations that influence the tectorial membrane (TM) show an incidence of SOAEs similar to that in humans. In this report, we characterized mice with a missense mutation in Tecta, a gene required for the formation of the striated-sheet matrix within the core of the TM. Mice heterozygous for the Y1870C mutation (TectaY1870C/+ ) are prolific emitters, despite a moderate hearing loss. Additionally, Kimura's membrane, into which the OHC stereocilia insert, separates from the main body of the TM, except at apical cochlear locations. Multimodal SOAEs are also observed in TectaY1870C/+ mice where energy is present at frequencies that are integer multiples of a lower-frequency SOAE (the primary). Second-harmonic SOAEs, at twice the frequency of a lower-frequency primary, are the most frequently observed. These secondary SOAEs are found in spatial regions where stimulus-evoked OAEs are small or in the noise floor. Introduction of high-level suppressors just above the primary SOAE frequency reduce or eliminate both primary and second-harmonic SOAEs. In contrast, second-harmonic SOAEs are not affected by suppressors, either above or below the second-harmonic SOAE frequency, even when they are much larger in amplitude. Hence, second-harmonic SOAEs do not appear to be spatially separated from their primaries, a finding that has implications for cochlear mechanics and the consequences of changes to TM structure.


Assuntos
Proteínas da Matriz Extracelular/genética , Células Ciliadas Auditivas Externas/fisiologia , Mutação/genética , Emissões Otoacústicas Espontâneas/fisiologia , Membrana Tectorial/fisiologia , Estimulação Acústica , Animais , Limiar Auditivo/fisiologia , Cisteína/genética , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Psicoacústica , Estatísticas não Paramétricas , Membrana Tectorial/anatomia & histologia , Tirosina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...